
Instituto Politécnico de Portalegre
Escola Superior de Tecnologia e Gestão

Departamento de Tecnologias
Licenciatura em Engenharia Informática

Relatório de Projecto

A Natural Language Processing Toolkit
Language modeling for next word prediction

Apresentado por
João Miguel Príncipe Fé

Orientador
Valentim Realinho

Setembro de 2021

Abstract

This work presents a small natural language processing (NLP) toolkit developed in C,
with a Python binding interface. The ultimate goal of this work is to develop a writing
assistance system for augmentative and alternative communication (AAC), which is used
by people that are incapable of using the common forms of communication (speech and
writing). From the various types of AAC, this work focuses on pictogram-based AAC,
which can be used by people of every age, literacy and cognitive levels, and with motor
diseases. A fundamental component of a writing assistance system is the next word
(or pictogram) suggestion/prediction. This work focuses on this part. To this end, the
state-of-the-art work in language modeling is reviewed and a small toolkit for next word
prediction is developed. The carried experiments show the potentiality of the developed
toolkit to be integrated in a writing assistance system for AAC, but also in any NLP
application where next word prediction is needed.

Keywords: augmentative and alternative communication, writing assistance, language
modeling, natural language processing, word prediction

iii

Resumo

Este trabalho apresenta o desenvolvimento de um pequeno toolkit de processamento
de linguagem natural desenvolvido (NLP) em C, com uma interface em Python. A criação
deste toolkit tem como objetivo final a implementação de um sistema de assistência de
escrita no âmbito da comunicação aumentativa e alternativa (AAC), utilizada por pessoas
incapazes de utilizar as formas mais comuns de comunicação – a fala e a escrita. Das várias
linguagens de ACC, este trabalho foca-se nas baseadas em pictogramas, que por poderem
ser utilizadas por pessoas de várias idades, tipos de literacia e desenvolvimento cognitivo,
e problemas motores, são as mais abrangentes. Uma parte fundamental num sistema
de assistência de escrita é a sugestão/predição da próxima palavra (ou pictograma, na
linguagem em particular). É nesta parte que o trabalho se foca. Nesse sentido, é estudado
o estado da arte na área da modelação de linguagem e é desenvolvido um pequeno toolkit
para predição de palavras. Os testes realizados demonstram a potencialidade do toolkit
desenvolvido para ser integrado num sistema de assistência de escrita no âmbito da AAC,
mas também em qualquer sistema de NLP que necessite de fazer predição de palavras.

Palavras-chave: comunicação alternativa e aumentada, escrita assistida, modelação de
linguagem, predição de palavras, processamento de linguagem natural

v

Contents

List of Tables ix

List of Figures xi

1 Introduction 1

2 Language Modeling 3
2.1 n-gram language models . 4

2.1.1 Smoothing techniques . 5
Additive smoothing . 5
Good-Turing . 5
Interpolation vs. Backoff . 6
Absolute discounting . 7
Modified Kneser-Ney . 7

2.1.2 Indexing and querying data structures 9
2.1.3 Improving language models . 13

3 Implementation 15
3.1 Overview . 15
3.2 ARPA format . 16
3.3 CETEMP preprocessing . 17
3.4 Trie implementation in detail . 18

3.4.1 Indexing procedure . 18
3.4.2 Next word prediction query . 19

3.5 Python API usage example . 21
3.5.1 Python binding . 21
3.5.2 SpaCy component . 21

4 Experiments 23

5 Conclusion 25

Bibliography 27

vii

List of Tables

2.1 Implementation of trie from Figure 2.1 using sorted arrays. Entries marked
with X are the dummy entries that are put at the end of the arrays so that
the entries at their left can obtain the children end index. 12

4.1 Accuracy (in percentage) of the kth prediction when using ML estimations
and mKN smoothing. 24

4.2 Accuracy (in percentage) of the kth prediction for pruned models. 24

ix

List of Figures

2.1 Trie for an example corpus ABBCACABAB. The number beside each node
represents its counts in the corpus. For example, the unigram A appears 4
times and the bigram AB 3 times. 11

3.1 Language model creation, from raw text to a queryable data structure that
can be used by an NLP system. 17

xi

Chapter 1

Introduction

Communication is a key element in animals’ life. It has greater importance for any social
animal, but for humans, it is probably even more important since without it Homo sapiens
could not be the species that maintains the most complex network of social relationships
among all species (which in turn allowed it to evolve in the way it did). For most human
beings, communication such as speech or writing is a given, however, some suffer from
serious communication difficulties, due to some kind of disease. One should have no
doubt about the importance of assisting those persons, not only from an individual point
of view but also from a social point of view, considering, e.g., the knowledge that Stephan
Hawking gave us all through its augmentative and alternative communication (AAC)
device. While in the past it was very difficult to assist these people, today, the ubiquity
of computers in our daily lives and the current-century progress in areas such as machine
learning and natural language processing (NLP) (with the former influencing the latter),
have opened new doors to the development of superior AAC systems. This is the ultimate
goal of this work.

There are different kinds of AAC, but two main branches can be identified: gestural
and graphic. The gestural requires motor skills, being as such not an option for people
with motor diseases. Within the graphic type are the systems based on images, pic-
tograms, words, and letters. Considering factors such as young age and illiteracy, the
AAC systems based on pictograms can be considered as the most encompassing type of
system. Although broader, this system can impose serious challenges to fluent conver-
sations since the set of choosable pictograms is very wide and the users need to select
the right ones manually, sometimes through non-friendly input interfaces (which becomes
particularly difficult for users with strong motor diseases). Considering this problem, it
would be of greater importance to have an intelligent pictogram predictor system that
would suggest pictograms given the current sequence of pictograms that the user already
chose during the current conversation.

Considering the availability of resources in the area of NLP, this work has focused on
the task of next word prediction (NWP) instead of pictogram. However, it is expected that

1

much of the work done here can be translated to the specific task of pictogram prediction.
Predicting the next word given some context sentence is tightly related to language mod-
eling, a sub-field of NLP with applications in several areas, such as machine translation,
speech recognition, handwriting recognition, and others. A statistical language model is a
queryable data structure from which a probability can be assigned to any given sentence.
A sentence can be seen as a particular sample of a language; thus, if some sentence is
commonly used within a language, a good language model for that language should as-
sign it a relatively high probability. Considering language models, the task of NWP given
some sentence context w = w1, . . . , wL and some vocabulary V , can be seen as the task of
finding the word wL+1 ∈ V that maximizes the probability P (w, wL+1). Independently of
targeted language (Portuguese, English, sign language, pictogram-based, etc.), there are
different types of language models. The most widely studied over the literature are the
n-gram models, which estimate the probability of a given sentence by the chain product
of the conditioned probabilities but conditioning the probabilities only on the last n − 1

words, i.e. P (w) =
∏L

i=1 P (wi|w1, . . . , wi−1) ≈
∏L

i=1 P (wi|wi−n+1, . . . , wi−1). In the last
decade, neural network based language models gain a lot of attention, with the achieve-
ment of performances superior to n-gram models in several applications. The simplest
types of these models have a fixed number of input units capable of processing only the
last n context words, however, the state of the art models are recursive neural networks
that receive one word at a time but are able to capture long-range relations within a
sentence due to their memory units.

This work had the goal of applying both types of language models to the application of
NWP, however, the n-grams models were sufficient to spent the summer in the computer.
The general concept of language modeling is presented in Chapter 2, with especial focus
on n-gram models on Section 2.1. Within this section two key subjects of n-grams mod-
els, smoothing techniques and indexing data structures, are surveyed in 2.1.1 and 2.1.2,
respectively. Considering the particular application of NWP, some possible improvements
to n-gram models are given in 2.1.3. In Chapter 3 a detailed description of the developed
work is presented, with Section 3.1 giving an overview of the work, Section 3.2 introducing
a widely use language model format file, Section 3.3 describing the applied preprocessing
of used text corpus, Section 3.4 describing and analyzing the implemented indexing data
structure, and Section 3.5 showing a sample usage of the developed toolkit. A set of
experiments is presented in Chapter 4, validating the hypothesis that n-gram language
models can be used for NWP. Finally, Chapter 5 concludes the work, with a critical view
and outline of ideas for future work.

2

Chapter 2

Language Modeling

Language modeling is the NLP sub-field which aims to develop good language models,
from which a useful probabilities can be assigned to any given sentence. A good language
model should assign a greater probability to sentence wA than to sentence wB if wA

is more commonly used within the considered language than wB. The way a language
model estimates these probabilities depends on the considered type of language model.
The following section will describe how the probabilities can be estimated for n-grams, but
before getting into the details of n-gram language models, it is important to understand
why consider language models in first place since the goal is to predict the next word
given some context. Firstly, the task of NWP is, by the nature of the natural language,
subject to stochasticity; not even the humans (which are the experts in natural language)
can predict every word someone is going to say. As such, NWP should be approached in
a probabilistic way (as language modeling is). Secondly, if one develop some system that
can make the NWP maxw P (w, w) for every possible context sentence w, it is very likely
that that same system can also estimate P (w, w) for any w.1 But estimating probabilities
for every w, w is exactly what language models do, whereby it can be seen how language
modeling and NWP are interchangeable concepts. However, when searching the literature
for NWP few work is found (and what appear refer to language modeling) in comparison
with what exist around language modeling. For this reason, the research in this work
focuses on language modeling as a mean to achieve NWP. This is also how keyboard
decoders that use NWP are lined up [9][18].

1If it does not, how does it know the maxw P (w, w)?

3

2.1 n-gram language models

Given some sentencew = w1, . . . , wL = wL
1 , by the chain rule of probability, its probability

P (w) can be calculate as

P (w) = P (wL−1
1)× P (wL | wL−1

1)

= P (w1)× P (w2 | w1)× · · · × P (wL | wL−1
1)

=
L∏
i=1

P (wi | wi−1
1).

However, this calculation is not feasible in practice since the complexity in regards of
space to store the conditioned probabilities would be O(|V|L). To solve this problem,
n-gram models make an (n − 1)th order Markov assumption by assuming that P (wi |
wi−1

1) ≈ P (wi | wi−1
i−n+1), yielding to simpler estimation of P (w) defined as

P (w) ≈
L∏
i=1

P (wi | wi−1
i−n+1),

that reduces the complexity to O(|V|n). Considering that in any natural language the
vocabulary V contains typically hundreds of thousands to millions of words, this makes a
huge difference in absolute values.

The natural way to estimate these conditioned probabilities is by counting the occur-
rences of the n-grams on the training corpus:

P (wi | wi−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)

, (2.1)

where c(w) gives the number of occurrences of w on the training corpus. In this way,
the resulting probabilities estimations are the maximum likelihood (ML) estimations on
the training data, and this type of estimation will be referred as PML in this work. While
being a simple way of estimating, the resulting model might suffer from two problems:
high bias (underfitting) and high variance (overfitting). High bias might occur when n is
too small, being the model unable of understanding any medium-long range dependency
within a sentence, whereas a high variance occur when n is large and the estimations are
made from a not so big corpus.2 In fact, both problems can occur simultaneously since
(1) natural language is full of long-range dependencies that cannot be captured using a
particular n, while (2) the training corpus may not be sufficiently large to contain all
language phenomena well distributed for the same n, resulting in imprecise probabilities

2The number of probability estimations increase exponentially with n, but a corpus is finite. Thus,
when n increases, the number of samples available in the corpus for each probability estimation de-
creases exponentially. If a probabilities are estimated from very few samples, it is unreliable that these
probabilities will be suitable for any other corpus.

4

estimations [4].
While there is probably no way of avoiding high bias when using a small n, there are

techniques to minimize the data sparsity problem that occurs when is n large. The most
considered technique in the literature is the smoothing technique, which tries to make the
estimated probabilities more uniform, decreasing the high probabilities and increasing the
low. There are many types of smoothing techniques, each one with its own motivation.
Chen and Goodman present some of these techniques in an extensive empirical study
[3]. In the following subsections, several smoothing techniques are presented, from the
simplest to the state-of-the-art smoothing technique, the modified Kneser-Key.

2.1.1 Smoothing techniques

Additive smoothing

The simplest type of smoothing is the additive smoothing [16, 17, 13, 12]. This adds a
constant value α to each count, where typically 0 < α < 1:

Padd(wi|wi−1
i−n+1) =

α + c(wi
i−n+1)

α|V|+ c(wi−1
i−n+1)

.

In this way there is no zero probabilities as might happen with ML estimations and the
probability distribution becomes more smoother than ML.3 To understand more con-
cretely how probabilities are modified with this smoothing, it can be stated that:

Padd(w) < PML(w) if PML(w) > 1
|V|

Padd(w) > PML(w) if PML(w) < 1
|V|

Padd(w) = PML(w) if PML(w) = 1
|V|

Good-Turing

Imagine someone is fishing and caught 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1
eel (totaling 18 fish).4 How likely is that the next fish to be caught is of trout species?
One might say 1/18. How likely is that next species is new (e.g., catfish or bass)? One
might consider the number of species that have only appeared once (which is 3) and say
3/18. But assuming this, the probability that next species is trout needs to be less than
1/18 (otherwise, the sum of all probabilities would be 1+ 3/18). This example shows the
problem of ML estimations: the unseen events are not considered, with all probability
mass being divided by the seen events. The example can be easily translated to the n-

3Zero probabilities are probably not a problem in next word prediction, but in other applications they
are. A speech recognition system, for example, might never translate some speech to some text if that
text never appeared on the training corpus even if there no noise in the speech.

4The slides from where this scenario was taken say its authorship is from Josh Goodman.

5

gram language models, where the fish fished are the n-grams seen in the training corpus
and the unseen fish are the n-grams unseen in the training corpus. J. Good, derives
(through non-simple mathematics) a smoothed estimator to answer the questions above,
whose simple form is defined as

PGD(w
i
i−n+1) =

N1

|Cn|
if c(wi

i−n+1) = 0

r + 1

|Cn|
Nr+1

Nr

otherwise

, (2.2)

where |Cn| is the total number of n-grams in the corpus, and Nr is the number of distinct
n-grams that appeared exactly r times on the training corpus [11].

Eq. 2.2 was derived theoretically but is actually an approximation and J. Good
advocates that for better estimations Nr values should be themselves smoothed before by
other smoothing technique. Nonetheless the conditions under which these smoothing is
applicable are not restrictive and the larger N1 the more applicable are the results [11].
This smoothing technique has influenced several other techniques.

Interpolation vs. Backoff

Two different ways of estimating the probability of an n-gram were given above, but both
ignore (because they were not developed specifically for language models) the fact that
an n-gram frequency might has an important correlation with its (n − 1)-gram context
frequency. Thus, if the estimated n-gram frequency is unreliable (i.e., there are few counts
of the n-gram on the training corpus) it might be useful to improve it with the frequency
values of the (n− 1)-gram, and even of (n− 2)-gram, (n− 3)-gram, . . . , and 1-gram.

There two main approaches for combining lower-order n-gram frequencies. One is
linear interpolation, which can be described as:

Pinter(wi|wi−1
i−n+1) = ρ(wi|wi−1

i−n+1) + λPinter(wi|wi−1
i−n+2), (2.3)

where λ is some weight that gives importance to the lower-order probability estimations;
and ρ(wi|wi−1

i−n+1) is some probability estimation for wi|wi−1
i−n+1, e.g., PML(wi|wi−1

i−n+1). To
end the recursion, it can be defined that Pinter(wi|∅) = ρ(wi|∅) = ρ(wi). The parameter
λ is typically defined so that the probabilities sum to 1. It can nonetheless be optimized
considering some metric. It is not mandatory to have a single λ for all contexts wi−1

i−n+2,
and in fact, that yields to poor performance. On the contrary, a different λ for each
existing wi−1

i−n+2 does not worth the effort (it would take time to be estimated, take extra
space within the model data structure, and the final consequence could just be a training
data overfitting). Bahl, Jelinek, and Mercer suggest estimating one λ for each set of
n-grams that occur exactly r times on the training corpus [1].

6

The other approach is backoff, which instead of always considering lower-order n-gram
frequencies, just backoffs to lower-order when there is no occurrence of the n-gram:

Pbackoff(wi|wi−1
i−n+1) =

ρ(wi|wi−1
i−n+1) if c(wi

i−n+1) > 0

λPbackoff(wi|wi−1
i−n+2) if c(wi

i−n+1) = 0
(2.4)

Absolute discounting

The absolute discounting was originally presented as an interpolation smoothing technique
that subtracts a fixed discount 0 < D < 1 to the number of occurrences of an n-gram
[19], so that in Eq. 2.3

ρ(wi
i−n+1) =

max{c(wi
i−n+1)−D, 0}

c(wi−1
i−n+1)

and to ensure that the distribution sum to 1

λ =
D

c(wi−1
i−n+1)

|wi : c(w
i
i−n+1) > 0|,

being its complete definition:

Pabs(w
i
i−n+1) =

max{c(wi
i−n+1)−D, 0}

c(wi−1
i−n+1)

+

D

c(wi−1
i−n+1)

|{wi : c(w
i
i−n+1) > 0}|Pabs(w

i−1
i−n+1).

Ney and Essen [20], arrived lately to a estimation of

D =
n1

n1 + 2n2

.

The concept of absolute discounting was integrated in several other smoothing de-
veloped later, mainly due to its simplicity. But a Church and Gale had already shown
that Good-Turing discounts become fixed when r ≥ 3, which brings even more value to
absolute discounting.

Modified Kneser-Ney

One common problem of existing backoff methods, identified by Kneser and Ney, was
that the backing off to lower-order probability estimation could lead to a higher proba-
bility estimation of the full n-gram than it should [14]. To understand why this is the
case, consider the word dollars which is very frequent in the Wall-Street-Journal corpus
but occurs almost exclusively after numbers.5 It is very unlikely that the word dollars

5Example from [14].

7

will occur after a word that has not been observed, say José. However, the estimated
probability ρ(dollars|José) will be relatively high because the model backoffs to dollars
and ρ(dollars) itself is relatively high.

To solve this problem, Kneser and Ney [14] proposed a new absolute discounting based
estimator, defined as

PKN(wi|wi−1
i−n+1) =

max{c(wi

i−n+1)−D, 0}
c(wi−1

i−n+1)
if c(wi

i−n+1) > 0

λ
N1+(·, wi

i−n+2)

N1+(·, wi−1
i−n+2, ·)

if c(wi
i−n+1) = 0

,

where · is a placeholder for any-word and N1+(·w) gives the number of distinct words
that precede w, so that

N1+(·, wi
i−n+2) = |{wi−n+2 : c(w

i
i−n+1) > 0}| and

N1+(·, wi−1
i−n+2, ·) = |{(wi−n+2, wi) : c(w

i
i−n+1) > 0}| =

∑
wi

N1+(·, wi
i−n+2).

Later, Chen and Goodman made some modifications to this method [3]. Firstly, they
used a linear interpolation version of the Kneser and Ney, i.e.,

PmKN(wi|wi−1
i−n+1) =

c(wi
i−n+1)−D(c(wi

w−n+1))

c(wi−1
i−n+1)

+ λPmKN(wi|wi−1
i−n+2). (2.5)

This version is fully recursive as opposite to the original version, which was designed for
bigrams (even though a recursive version of it would be straightforward). As referred at
the final paragraph of 2.1.1, Good-Turing discounts become fixed when r ≥ 3, but when
r ≤ 3 they tend to differ considerably. In line with this, another difference is the use of a
discount D(c) that depends on the number occurrences of wi

i−n+1 in the training corpus:

D(c) =

0 if c = 0

D1 if c = 1

D2 if c = 2

D3+ if c ≥ 3

.

Lastly, the λ coefficient ensures that the probabilities sum to 1, while giving more or
less importance to the lower-order distribution if more or less distinct words procede the
lower-order n-gram, respectively, in the training corpus (in similar thought to Kneser and
Ney):

λ =
D1N1(w

i−1
i−n+1, ·) +D2N2(w

i−1
i−n+1, ·) +D3+1N3+(w

i−1
i−n+1, ·)

c(wi−1
i−n+1)

.

8

The estimated optimal values for D1, D2, and D3+ are

D1 = 1− 2Y
n2

n1

D2 = 2− 3Y
n3

n2

D3+ = 3− 4Y
n4

n3

,

where Y = n1

n1+2n2
[3].

While somewhat complex and challenging to build language model using it, this be-
came the most widely used smoothing technique in language models.

2.1.2 Indexing and querying data structures

In the previous section it was discussed how to achieve the most accurate and trustable
probability estimations. However, that by itself is not enough if there is no efficient
data structure capable of mapping a large set of (possibly large-order) n-grams to their
respective conditioned probabilities, so that a powerful language model can exist. Not only
do the conditioned probabilities of seen n-grams need to be available, but also the backoff
coefficients that allow estimating probabilities for unseen n-grams. This backoff coefficient
refers to the λ parameter in the equations of the previous section.6 While some estimators
use a constant λ, the state-of-the-art modified Kneser-Ney uses a (possibly) different λ for
each n-gram. Note that, differently from the probability values, the backoff values do not
need to be saved for the higher-order n-grams, such that for a language model of order
N , only the l-grams need to have an associated λ, where l ∈ {1, . . . , N − 1}. Together,
probability and backoff values are also referred as satellite values ; and developing a data
structure capable of handling the satellite values of every n-gram in a training corpus is not
a memory friendly challenge, especially when N is large. To give a sense of the data scale,
the training corpus used in this work, the Corpus de Extractos de Textos Electrónicos
MCT/Público7 (CETEMP), (which can be considered small when compared to many
available English corpus) contains approximately 1, 15, and 63 millions of distinct 1-
grams, 2-grams, and 3-grams, respectively, and the number keeps increasing exponentially
with n (until the limited size of the corpus allows it). In this section, two data structures
(and several of their variants) capable of index millions of n-grams together with their
satellite values will be explored.

The two main data structures used to map n-grams to their satellite values are hash
tables and tries. Hash tables are used when query (i.e., obtain the probability of a given

6The term backoff coefficient might feel strange when talking about interpolation methods, but note
that interpolation methods backoff implicitly to lower-order frequencies for unseen n-grams. (For unseen
n-grams, Eq. 2.3 and Eq. 2.4 yield the same result.)

7https://www.linguateca.pt/CETEMPublico/

9

n-gram) speed is more important than memory consumption. In this scheme, there is one
(giant) hash table for each order, totaling N hash tables. For each order l, on each entry of
the lth hash table are saved the l-gram key, probability and backoff coefficient; and for the
order N , on each entry of the N -grams hash table only the key and probability value are
saved (since, as already referred, the backoff values do not need to be saved for N -grams).
Considering that normal training corpus tend to have millions of distinct n-grams, it
is common to use 64-bit hash keys to avoid hash collisions8. A popular hash function
for the job is MurmurHash9, which, while computationally simple, yields considerably
well-distributed hashes. To resolve bucket collisions in hash tables (which should not be
confused with hash collisions) it is necessary to have more buckets than entries, so that
whenever the bucket corresponding to some hash is already occupied, an empty one can
be found easily (through some probing technique, such as linear probing). The ration
of buckets to entries is controlled by a space multiplier m > 1. Hash tables allow for
constant time (in relation to the number of entries) when querying for the probability of
a given n-gram, however this type of model is not the most memory efficient since it is
necessary to keep 64-bit keys and compression techniques can not be applied because of
the random nature of the data structure.

A trie [8], or prefix tree, is a tree data structure used to index compounded keys in
situations where keys tend to share some of their sub-parts. This fits well for indexing
n-grams, considering that each n-gram is formed by other lower-order n-grams, which are
typically shared between multiple n-grams. To understand how tries structure the infor-
mation consider, as an example, a vocabulary V = {A, B, C} and the corpus ABBCACABAB,
from which several n-grams can be counted, and see the trie representation in Figure 2.1.
This example trie models up to 3-order n-grams, but each of its nodes contains only one
vocabulary symbol as key. To find some n-gram, say the 3-gram ABB, the trie is depth-first
searched by A, then B, and then by B, reaching the level 3 of the trie, where it can see that
the trigram ABB count is 1. While this example considers only n-gram counts, the nodes
can obviously keep any necessary satellite values, such as conditioned probabilities and
backoff coefficients. Even though the figure shows that each node have a set of pointers to
its children, in practice this is unfeasible (and not necessary). Instead, several approaches
have been developed to implement these tries more efficiently, as it will be described next.
(The toolkits referred next also have especial hash table implementations, but the focus
will be on tries since they are more memory efficient, and thus more suitable for mobile
devices).

The SRILM toolkit [24] implements the trie data structure in two distinct ways. The
default one uses one hash table per node from where the 64-bit children pointers can

8Considering a completely uniform-random hash function and using 64-bit keys, a collision is only
expected after hashing a total of

√
264 = 232 distinct n-grams. Search for birthday problem for extra

details.
92http://sites.google.com/site/murmurhash/

10

A B C

A B CCB A

B C AB B C

4

1

4 2

1 1 23 1

1 1 1 1 1 1
AA

1 1

Figure 2.1: Trie for an example corpus ABBCACABAB. The number beside each node rep-
resents its counts in the corpus. For example, the unigram A appears 4 times and the
bigram AB 3 times.

be obtained. The compact version uses sorted arrays instead of hash tables within each
node, requiring binary search to find a child but saving some memory since hash keys
are not stored nor the extra buckets necessary for hash tables. Even though, it still
keeps the 64-bit pointers to the children, just like shown in Figure 2.1, being thus an
inefficient representation. Both implementations use a pure C struct to represent each
node, with keys and satellite values being saved in normal data types, such as int and
float, forbidding any kind of compression, quantization10, or bit packing. In the end, the
resulting models are simple and fast (special the one that uses hash tables), but require
too much memory.

The IRSTLM project [7] was developed with more focus on memory usage and it
overcomes SRILM in that regard. In their trie implementation, each node saves only
one pointer to an array wherein all its children are (in opposition to SRILM, where each
node had one pointer for each child). During the build process these arrays are allocated
(and reallocated if necessary) individually, but after every n-gram in the corpus is read,
the arrays belonging to the same order are collapsed in a giant array, being the final
trie represented by N sorted arrays. The pointer previously mentioned, is actually the
start index of the children in the next-order array. Table 2.1.2 show how the N arrays
would be populated for the example of Figure 2.1. The arrays are sorted by complete key,
which is clear for the first-order array; the second-order array starts with B because its
complete key is ABB, and is followed by C which has the key AC, and so on. The index

field of element A in the first-order array (with value 0) indicates where its children nodes
start in the second-order array. To know the index where its children end, one can see

10Quantization is the process of mapping values from a set of some size to values from a smaller set,
reducing their memory size but loosing precision.

11

the children of the adjacent node, B, start: since B’s children start at index 2, the A’s
children end at index1. To know where the last elements’ children end (e.g., the end
index of the C’s children), it is necessary to add some a dummy element at the end of each
array (except the last order array, since its elements do not have children). These dummy
elements have no key nor satellite values, just the index value, which for the first-order
array is 6 because C’s children start at index 5 but C has only one child node (differently,
CA has two children nodes starting at index 4, which requires the dummy element index
in the second array to be 4 + 2 = 6). To improve the memory efficiency of the solution,
IRSTLM additionally offers a compressed version, where 8-bit quantization is applied to
the probability and backoff values. To reduce the query and loading times, a hash table
based caching mechanism and binary file with memory mapping are used, respectively.
The empirical results shown memory savings over SRILM of 64% and 76% when not using
and using quantization, respectively, on SITACAD corpus [7].

1
key A B C X
count 4 4 2 X
index 0 2 5 6

2
key B C A B C A X
count 3 1 1 1 1 2 X
index 0 1 1 2 3 4 6

3 key A B A B C A B C
count 1 1 1 1 1 1 1 1

Table 2.1: Implementation of trie from Figure 2.1 using sorted arrays. Entries marked
with X are the dummy entries that are put at the end of the arrays so that the entries at
their left can obtain the children end index.

In 2011, BerkeleyLM [21], using a considerably different trie structure, improved both
query time and memory consumption over IRSTLM trie. BerkeleyLM also uses N sorted
arrays, however, these are not sorted by key, but by the last part of the key (i.e., by the
symbol/word/gram each entry holds). This means that the entries with the same word are
all placed consecutively in the array. Taking advantage of this, the words are not explicitly
saved in the entries, but rather in an auxiliary array, where there is an entry for each word
indicating the range of the main array that corresponds to that word. Also, words are bit
packed and satellite values are rank encoded. For CETEMPúblico, for example, having
words bit packed would mean that each word could be uniquely represented using just
dlog(1 × 106)e = 20 bits.11 Having satellite values rank encoded means to define a set
of distinct probabilities and set of distinct backoff values that were calculated from the
corpus and sort these sets by descending order of frequency, so that the codes of the
most common satellite values are the lower ones, which can then be exploited by the
variable-length encoding compression technique that is applied in the compressed version

11log x should be interpreted in this work as binary logarithm of x unless stated otherwise.

12

of BerkeleyLM. Variable-length encoding the complete arrays would prevent using binary
search on them, as such the compression is done in blocks of 128 bytes. While saving
memory, it becomes slower than the normal version due to uncompression overhead. The
experiments on Web1T corpus [2], shown a memory reduction over the not quantized
version of IRSTLM of 82% and 74% when using the compressed and normal version,
respectively [7].

In the same year, the KenLM toolkit was published [10], overcoming every existing
toolkit, including BerkeleyLM. The trie structure is the same as in IRSTLM (based on
sorted arrays, where each node points to the children array range), but here the words
and indexes are bit packed, which considerably reduces the memory size. The greater
novelty was that, by knowing the range of the word identifiers, they used interpolation
search to search the arrays instead of binary search, reducing the expected search time on
array A to O(log log|A|).12 In the experiments they did not compare their trie against the
non-compressed version of BerkeleyLM, saying that the source code was not released, but
the comparison between compressed versions of both toolkits shown that KenLM memory
usage was only slightly small, taking about 92% of the BerkeleyLM trie memory. While
it have not bring great memory improvements, the structure simplicity inherited from
IRSTLM, the use of interpolation search, and the developed stateful queries mechanism13,
have resulted in query time speeds at least two times faster than any other toolkit. This
toolkit has become the most used n-gram language modeling toolkit in the past decade,
being integrated into the Moses, cdec, and Joshua, and other translation systems.

Much more recently, the toolkit developed by Pibiri and Venturini had beat consider-
ably the KenLM in regards of memory usage, through the implementation of Elias-Fano
encoded tries [6, 5, 22]. However, the Pibiri and Venturini work was not considered in the
present work. Instead, the trie implemented in this work is based on KenLM due to its
simplicity and (even so) efficiency. The developed trie and the overall developed toolkit
are detailed described in Chapter 3.

2.1.3 Improving language models

The choice of a good smoothing technique and indexing data structure is crucial to have
a capable language model. However, depending on the context application and training
corpus, the preprocessing of the training might be such or more important than the
choice of smoothing technique or indexing data structure. There are several preprocessing
techniques that can be applied to the corpus [15], but considering the target application

12Interpolation search is similar to what humans do when searching for a word in a dictionary. If they
want to find the meaning of word ambition, they will open the dictionary in the first pages (because they
know that A is the first letter in the alphabet), not in the middle as binary search would do.

13The stateful queries (also presented in BerkeleyLM as scrolling queries) are mainly useful in transla-
tion systems, where several n-grams with similar contexts need to be evaluated. To avoid repeated trie
traversals, the model keeps track of the last query context.

13

of NWP and the use of journal corpus, the most relevant are removal of punctuation,
capitalization (i.e., put all letters in lower case or all in upper case), and special characters
(this is indeed a problem of the used corpus, where there are many citations wrapped by
the symbols « and »). Considering the same corpus but the application of next pictogram
prediction, stemming or lemmatization could also be very important techniques. Both
stemming and lemmatization convert the words in their basic form (e.g., studying is
replaced with study), which helps to reduce the vocabulary size without necessarily loose
the sentence meaning.

Finally, there is a technique that is essential to every tree health: pruning. In real
world, if trees are not pruned, their branches break. In computer world, if trees are not
pruned, the memory breaks. In language models, pruning is a very important technique
considering the fact that many n-grams only appear once. n-grams with few counts not
only occupy considerable space, but their probability estimations are also very unreliable,
as already discussed. Particularly, in the application of NWP, there is much less value in
the n-grams with few counts than in a normal language model that has to be capable of
assigning a good probability to any given sentence (including the ones made of uncommon
n-grams). Considering this, a fundamental step in the development of successful language
model for the task of NWP, is the application o pruning. It is not easy to say in advance
exactly what n-grams should be pruned: if the 3-grams that appear only once, all n-grams
that appear only once or twice, etc. The right choice is found empirically, considering the
trade-off between memory usage and accuracy.

14

Chapter 3

Implementation

It should be disclosed that it was not part of the initial plans to spend several weeks
developing any type of indexing data structure. However, known NLP libraries, such
NLTK1 or SpaCy2, do not offer any out-of-the-box NWP module, not even language
modeling. Most of these libraries offer several useful features, such as text preprocessing
functionalities, named entity recognition, part-of-speech tagging, and others, but all these
are just utilities to facilitate the development of specific and concrete intelligent systems.
Considering out-of-the-box solutions, the closest to NWP, or language modeling to be
accurate, is probably the OpenAI GPT-23 language model provided by Transformers4,
but using this to achieve NWP would be overkilling and unfeasible in practice. At the
same time, the NWP capabilities of some known virtual keyboards are closed-source.
Lastly, the toolkits mentioned in the previous chapter, while open-source, can not be
used for NWP since they implement reverse tries (see 3.4.2). Because of these reasons
(and also the advantages of having your own solution), it was decided to develop the small
toolkit for NWP presented here. In the next section, an overview of all the developed
work is presented, and in the sections that follow it, concrete descriptions of the different
parts are presented.

3.1 Overview

The majority of the project consists of a C library that implements a trie data struc-
ture based on the trie implementations of IRSTLM/KenLM. This library is prepared to
build/index language model tries from ARPA files (more on this later). Once created,
the trie can be queried to assign probabilities to sentences, or to give NWP given some
context sentence. The trie itself can be saved to disk in binary format as is in memory,

1https://www.nltk.org/
2https://spacy.io/
3https://github.com/openai/gpt-2
4https://github.com/huggingface/transformers

15

which allows it to be later quickly loaded into memory. Because the indexing procedure
takes time, an extra executable that creates tries from ARPA files is also offered. This can
be used as a terminal program by users (it offers –-help documentation) or be instanti-
ated by other programs, which can then kill it whenever and if desired. (This happens
in the Python library when users abort the build procedure. When it happens, only the
indexing process is terminated, while Python keeps running normally).

The remaining of the project consists of a Python binding to the C library and a
SpaCy component for NWP. The role of the Python binding is to make the developed
C library usable in pure Python. It is available for installation on PyPI, but only with
wheels for Linux platforms.5 The SpaCy component depends on the Python binding and
is available in Github.6 SpaCy makes use of the pipeline design pattern to process the
text. A pipeline contains a sorted list of components that process the text sequentially,
where each component adds attributes to the Doc object7 that can be used by the following
components. Thus, the goal of the component is to make the NWP feature available as
an add-on for any system developed on SpaCy.

3.2 ARPA format

The ARPA file format is designed to save n-gram backoff language models in pure text.
While there is no official specification, the format is so simple and suitable to many
smoothing techniques that every toolkit understands it. The header section starts with
the keyword \data\ on the first line and the following lines indicate the number of distinct
n-grams (one line per order). The remaining content of the file is the body section, which
is divided into N subsections (one for each order), where the probability and backoff
values for each n-gram are listed.

The ARPA format is useful because it represents language models in a toolkit-independent
way, but it can not be used directly as in-memory indexing data structures since it takes
too much space (because it is pure text) and has no structure that allows for efficient
queries. The process of generating the ARPA files is commonly referred to as estimation.
The estimation procedure, where a huge raw corpus is processed, is itself time demand-
ing and several toolkits have developed their own estimation procedure (e.g., KenLM
published its estimation procedure in 2013 [10], and Pibiri and Venturini in 2019 [23]).
However, estimation should not be confused with indexing, since the latter is the proce-
dure that generates an in-memory data structure that can efficiently be queried by other
systems. Figure 3.1 shows the language model creation workflow, clarifying the distinction
between estimation and indexing. The developed library in this work does not implement

5https://pypi.org/project/ngram-lm
6https://github.com/joaompfe/word-prediction
7The Doc object wraps every text unit in SpaCy, containing extra information/attributes about it.

16

ARPA file

«flow»
Estimation Indexing NLP system

Queryable
data structure

«flow»

Preprocessing
Raw file

Text source

SL file

«flow»

«flow»

Figure 3.1: Language model creation, from raw text to a queryable data structure that
can be used by an NLP system.

any estimation procedure. The preprocessing and indexing steps will be detailed in the
following sections.

3.3 CETEMP preprocessing

The corpus used in this work is available for downloading at Linguateca website.8 It
contains more than 7 million sentences and more than 900 hundred unique tokens. In
its original form, it seems like XML, but it does not strictly conform with XML format.
As such, a first script was developed to convert the raw format to valid XML.9 From the
valid XML, two other scripts can be used if desired: one that converts it to JSON and
another that converts it to a non-standard format that places one sentence per line and
separates each token by one space. The latter format will be referred to in this work as SL
format and, while non-standard, is used as input by many ARPA generators. The corpus
in SL format was divided in three parts: train part that contains approximately 96% of
the complete corpus, and dev and test parts that contain approximately 2% of the corpus
each. (This division was done initially having in mind the need to empirically optimize
the hyperparameters of the neural language models on the dev corpus. Considering that
no neural language model was developed, the dev set was not used.) Then, from the train
set, a first train ARPA was generate using the estimation procedure available in KenLM
toolkit [10], which uses the modified Kneser-Ney smoothing by default, and a second was
generated using the SRILM ngram-count program and the cnt2arpa script, yielding to
ML estimated probabilities. These ARPA files were then used to build the trie-based
language models (see next section).

Because all this preprocessing takes time (from minutes to hours, depending on the
used machine), all these files and some ready-to-use models are available online for down-

8https://www.linguateca.pt/CETEMPublico
9All CETEMP preprocessing scripts are available at https://github.com/joaompfe/word-

prediction/tree/master/scripts/cetemp

17

load through commands offered by the developed library.

3.4 Trie implementation in detail

The trie implementation of the developed toolkit is highly based on the KenLM trie
implementation (which is itself based on IRSTLM trie). As KenLM, the word keys are bit
packed, but no compression or quantization of the satellite values is offered. Considering
that this trie targets NWP and not probability assignment, the backoff values are not
stored since they are constant for n-grams with equal context and consequently, only the
conditioned probabilities on that context matter when choosing the maximum probability
word. It is important to note that this does not mean that using modified Kneser-Ney
smoothing or maximum likelihood estimations lead always to equal NWPs. This is not
true and Chapter 4 shows it empirically. While the trie structure was based on KenLM,
the indexing procedure was not and any similarity is coincidence. The procedure, which
is rather simple, is described below.

3.4.1 Indexing procedure

For simplicity, let un = N1+(w
i
i−n+1) be the number of distinct n-grams. Then the indexing

procedure used in the developed toolkit is as follows:

1. Read from the ARPA file header the number of distinct n-grams, un, for each
n = 1, . . . , N ;

2. Create the vocabulary lookup array V by reading the 1-gram section of the ARPA
file and hashing each 1-gram, pushing the hash value into the array. After that, sort
V by hash value. With that, the id of each word is the position of its hash value in
V . Each id can be uniquely represented in dlog|V |e;

3. Considering the number of distinct 1-grams from step (1), allocate the required
space for the 1-gram array A1 [u1(dlog u2e+32) bits, where dlog u2e is for the index
and 32 for the probability, for each of the u1 entries], and reread the 1-gram section,
placing each 1-gram/word probability at A1[i], where i is the word id (which can be
determined by binary searching the lookup array V);

4. For each n = 2, . . . , N − 1 do:

(a) Allocate the required space for An (un(dlog u1e + dlog un+1e + 32) bits, where
dlog u1e is for the word id, dlog un+1e for the index, and 32 for the probability,
for each of the u1 entries);

18

(b) Read the n-gram section of the ARPA file, pushing into An a temporary repre-
sentation of each n-gram w, which is composed by the following triplet: (i) the
probability value, (ii) the word wn id (which can be determined by searching
the lookup array), and (iii) the index of wn−1

1 in the previously build array
An−1 (which can be determined by depth-first searching the trie, i.e., searching
for wi on Ai, from i = 1 to i = n − 1). (This is called temporary represen-
tation because wn−1

1 indexes are kept only because of steps (c) and (d), being
overwritten afterwards in the next iteration of (4), as explained in step (d));

(c) Sort An by index of wn−1
1 and by wn id for equal wn−1

1 indexes;

(d) Having An well sorted, the An−1 pointer indexes to An can now be filled, being
the previously saved indexes of wn−2

1 in An−1 overwritten by these pointer
indexes. At this moment, An−1 assumes its final form.

5. Allocate space for AN (which requires uN(dlog u1e + dlog uN−1e + 32) bits, where
dlog u1e is for the word id, 32 for the probability, and dlog uN−1e is only required
for the temporary representation, i.e., wN−1

1 indexes, for each of the uN entries) and
read the N -gram section of the ARPA file, saving the temporary representation of
each N -gram as in step (4b). Sort AN as in step (4c) and fill the pointer indexes of
AN−1 as in step (4d). With AN−1 well sorted, AN can be reduced by removing the
unnecessary wN−1

1 indexes.

Considering that sorting is done using the quick sort algorithm, the time complex-
ity of the procedure is as follows. Step (1) takes O(N); step (2) takes O(|V | log|V |);
step (3) takes O(|V | log|V |); step (4), takes

∑N−1
n=2 O(|un| log|un|); and step (5) takes

O(|uN | log|uN |). Considering these complexities and assuming uN > ui for i = 1, . . . , N −
1, the overall procedure complexity can be resumed as O(N |uN | log|uN |).

The memory complexity is the same as the complexity of the final structure: O(N |uN |).
More concretely, both require

u1(64+size(w))+u1(dlog u2e+32)+
N−1∑
n=2

un(dlog u1e+dlog un+1e+32)+uN(dlog u1e+µ+32)

bits, where size(w) gives the average number of bits required to represent the words text,
and µ = 0 for the final trie structure and µ = dlog|uN−1|e for the indexing procedure.
Considering N = 3, a trie built from the unpruned train ARPA would take approximately
557MB without the words text and 572MB with the words text.

3.4.2 Next word prediction query

The NWP query procedure can be divided in three steps: validate the context n-gram,
find the context in the trie by depth-first search, and search from the respective n-gram

19

children the one with the highest conditioned probability. The context is passed to the
procedure as a list of strings, so the first step is to convert it into a list of word ids
by searching the vocabulary lookup array. If a gram of the n-gram is not found in the
vocabulary, there is a backoff to the grams following the non-found gram, i.e., if the jth

gram is not found, the n-gram wi
n−i+1 is reduced to wi

n−i+1+j. After that, the trie can be
depth-first searched. If at any level of the trie the search word is not found, there is a
backoff to the lower-order n-gram, with the search for this restarting from the trie root.
When the final word of the n-gram is found, its children are iterated to find the maximum
conditioned probability entry. From the time complexity point of view, this last step is
the most expensive one, since the search is done in linear time in relation to the number
of children. This is so because the entries are sorted by key and not by probability value,
which impedes the use of binary search.

An especial note should be said about the second step. As mentioned, whenever a
word is not found during the trie search, the search for the lower-order n-gram needs from
the root, which means that in the worst-case N,N − 1, . . . , 1 binary searches are carried
out. However, there is a different type of trie, reverse trie, that avoids this by saving the
n-grams in the reverse order. To understand this, consider an example 3-gram ABC. In a
reverse trie, the symbol/word C would be saved on the first level array, B on the second,
and A on the third. The first node (where C is saved) would contain C’s probability, the
second node (where B is saved) would contain the conditioned probability P (C | B), and the
third node (where A is saved) would contain the conditioned probability P (C | AB). Now,
to calculate P (C | AB) the trie is depth-first searched by C, then B, and then A, totaling 3
binary searches. However, imagining that A was not found in the B’s children, P (C | AB)
would be calculated by backing off to P (C | B), whose value is immediately available in
the B’s node, being thus not necessary to research the trie from the root. This means that
in the worst case, N binary searches are carried out. While reverse tries improve query
times, they can not be used for NWP. Finding the NWP given some context in a reverse
trie would imply searching the full trie.

The NWP procedure described focused only on the query of only one prediction,
but the developed toolkit has implemented an extra procedure to allow the query of k
predictions. This procedure presents extra challenges, which start when k is greater than
the number of children (which might also happen for the single prediction query when
there are no children, but the solution is as simple as backing off to the lower order
n-gram and search for the highest probability). When that happens, all the available
children are selected as predictions, and the search for the remaining predictions happens
in the lower order n-gram children. A special challenge exists at this moment since the
highest probability words in these children might be already selected from the higher-
order n-gram children. As such, whenever the search happens on children of lower-order
n-grams, these need to be filtered according to the already selected predictions. This

20

challenge does not increase the time complexity nonetheless. Note however that, because
a reverse trie is not used, when there is a backoff to a lower order n-gram, the trie needs
to be searched from the root again. Also, when k is less than the number of children,
the children entries are first sorted by probability value, and then the top-k are selected.
Both facts mean that querying k predictions might become an expensive procedure if k
is large.

3.5 Python API usage example

Here a sample usage of the developed Python binding and SpaCy component is given.
Consult the online documentation for installation guidance and up-to-date documenta-
tion.10

3.5.1 Python binding

Given an ARPA file, a trie can be built like this:

from ngram_lm.trie import build

lm_order = 3

arpa_path = "/path/to/arpa-file"

out_path = "/the/desired/output/path/where/trie/will/be/saved"

build(lm_order, arpa_path, out_path)

Then, the trie can be loaded into memory and queried for NWPs:

from ngram_lm.trie import Trie

t = Trie(out_path)

context = ["ele", "foi"]

n_predictions = 5

predictions = t.next_word_predictions(context, n_predictions)

for p in predictions:

print(p)

3.5.2 SpaCy component

Create a text-processing pipeline, e.g.:

from spacy.lang.pt import Portuguese

nlp = Portuguese()

10https://joaompfe.github.io/ngram-lm for Python binding and https://joaompfe.github.io/word-
prediction for SpaCy component.

21

Create a pipeline predictor component and add it to the pipe:

from word_prediction.nwp import TrigramLmWordPredictor

from word_prediction.trie import Trie

@Portuguese.factory("next_word_predictor")

def create_next_word_predictor(nlp, name):

order = 3

t = Trie(order, "models/train-mkn-trie") # this model will only be

available if you download the pre-built models

nwp_pipe_component = TrigramLmWordPredictor(t)

return nwp_pipe_component

nlp.add_pipe("next_word_predictor")

Process some sentences and see the NWPs:

sentences = ["seria muito", "demasiado para", "sem que", "com muita"]

for s in sentences:

doc = nlp(s)

print("’%s’ NWP is: ’%s’" % (s, doc._.nwp))

22

Chapter 4

Experiments

Language models are not usually an application in themselves. Instead, they are typically
a component of larger systems (e.g., a virtual keyboard or speech recognition system). In
the end, what matters is the performance of the application where they are embedded.
When these applications are evaluated with respect to some metric, the language model
they embed is evaluated extrinsically. Nonetheless, it might be useful to evaluate the qual-
ity of models without considering any particular application scenario. To do so, intrinsic
tests, such as held-out likelihood or perplexity (which is just a different representation of
the former), are used. These tests might differ in the way the final result is presented, but
they all evaluate the model based on the same metric: the probabilities that the model
assigns to the n-grams of a given test corpus. Typically, the best models assign higher
probabilities to the sentences in the corpus, but the best models in intrinsic tests might
not be the best in the real application (it is actually very simple to have a perfect model
in intrinsic tests which is useless for any application: one that assigns always 1 to every
sentence.). As such, whenever the models are to be used in some application, it is the
application that should be evaluated [4].

To prove the concept that a good next word predictor can be achieved through n-grams
(or 3-grams, more concretely) language models, several 3-order language models were
generated from the training corpus and, then, each model was queried for NWPs using
each bigram in the test corpus as prediction context. In total, each model was queried
3 538 930 times, returning k = 10 predictions sorted by descending order of probability
for each time. The first tested models are two unpruned language models, one that uses
ML estimations and the other that uses modified Kneser-Ney smoothing. The results are
shown in Table 4.1, showing that for approximately 27% of the contexts, the prediction
#1 of both models correctly matches the real next word. Also, considering the top 3
predictions, the models correctly predict the next word approximately (27 + 9 + 6)% of
the time (3 is the typical number of predictions/suggestions given by virtual keyboards in
mobile phones). Considering the complete set of 10 predictions, the next word is contained
in that set 61% of the time, for both models.

23

1 2 3 4 5 6 7 8 9 10 [1-10]
ML 27.42 9.76 6.23 4.45 3.36 2.68 2.21 1.88 1.64 1.43 61.06
mKN 27.46 9.66 6.22 4.46 3.37 2.69 2.22 1.88 1.65 1.44 61.04

Table 4.1: Accuracy (in percentage) of the kth prediction when using ML estimations and
mKN smoothing.

The accuracy achieved by both models is very good. (If one does not think the
results are good, remember that the task of NWP is stochastic and not even the special-
ists in natural language, the humans, can correctly predict the next word 100% of the
time.) However, both models take approximately 572MB, which means they can not be
used on any mobile device due to memory restrictions. Nonetheless, these results show
the importance of extrinsic tests since both ML and mKN models achieved very similar
performances (with ML even surpassing mKN when considering the complete set of 10
predictions), while it is widely known that mKN has much superior performances than
ML in intrinsic tests done in English corpus [3].

Considering the current mobile memory restrictions, two other pruned models were
tested, both using mKN smoothing. One was pruned by removing every n-gram that
occurred only once (which will be denoted by P1), and the other by removing every
n-gram that occurred only three or fewer times in the training corpus (which will be
denoted by P3). With that, the models’ size was reduced from 572MB to 165MB and
72MB for P1 and P3, respectively. The results are shown in Table 4.2. In comparison
with the unpruned models, there is a loss of precision for the #1 prediction of about 20%
and 28% for P1 and P3, respectively. Considering the set of the top 3 predictions, the
loss is about 19% and 27% for P1 and P3, respectively. Considering the complete set of
10 predictions, the loss is about 18% and 26% for P1 and P3, respectively. There is a
considerable difference in accuracy between the unpruned and pruned models, but much
higher is the difference between their sizes. Particularly, P3 size is almost one order lower
than the unpruned versions while its accuracy is only about 27% worse. While 72MB is
still expensive for mobile devices, it should be noted that no corpus preprocessing was
done to remove capitalization, punctuation, or another type of noise, meaning that the
models’ vocabulary is much larger than it needs, and consequently the models size, as
well.

1 2 3 4 5 6 7 8 9 10 [1-10]
P1 21.81 8.11 5.29 3.79 2.84 2.26 1.91 1.57 1.37 1.20 50.16
P3 19.71 7.40 4.83 3.45 2.58 2.05 1.68 1.42 1.25 1.11 45.48

Table 4.2: Accuracy (in percentage) of the kth prediction for pruned models.

24

Chapter 5

Conclusion

The ultimate goal of this work was to develop a pictogram predictor for AAC systems.
To this end, the state-of-the-art work in language modeling was reviewed, with smoothing
techniques and indexing data structures surveyed. Considering the lack of solutions to
next word prediction, a small toolkit was developed, implementing a trie data structure
based on the one used by KenLM. After this, several experiments were carried out for
the specific task of next word prediction. In total, four different language models were
tested, achieving good accuracy but occupying too much memory when considering the
mobile hardware restrictions. Nonetheless, especially considering the most pruned model,
it was shown that n-gram models and the developed toolkit are viable options for next
word prediction.

There are, nonetheless, several weaknesses and shortcomings of the developed toolkit
that should be discussed. Currently, there is no hash collision detection during the vo-
cabulary building procedure. Detecting this is trivial (just check whether the array entry
is empty or not), but resolving a hash collision is not trivial since the array has a fixed
length. Also, there is no cache mechanism to avoid unnecessary trie traversals when equal
contexts are given. Considering the memory restrictions of mobile devices, compression
or quantization could be very important. As future work, the implementation of an Elias-
Fano trie as done by Pibiri and Venturini or the implementation of quantization should
be studied. Currently, the indexing procedure is done completely in-memory and is rather
naive. In the future, the currently used indexing procedure should be redesigned. Consid-
ering the NWP query time complexity (especially the linearity in relation to the context’
children), it might be possible to design a completely new data structure targeting NWP
to reduce this complexity.

Regardless of these weaknesses, there are two general paths for future work (not mu-
tually exclusive). The first is to fulfill the ultimate goal by mapping the work done to the
particular case of pictogram prediction. The second is to keep developing the library to
offer a ready-made solution for next word prediction or even general language modeling
through a high-level language (e.g., Python) interface. When researching solutions for

25

next word prediction, it was founded that ready-made solutions for it are lacking, and
while there are solutions for general language modeling, these are typically only offered
through a C++ interface.

26

Bibliography

[1] Lalit R Bahl, Frederick Jelinek, and Robert L Mercer. “A maximum likelihood ap-
proach to continuous speech recognition”. In: IEEE transactions on pattern analysis
and machine intelligence 2 (1983), pp. 179–190.

[2] Thorsten Brants and Alex Franz. “Google web1t 5-gram corpus, version 1”. In:
Linguistic Data Consortium, Philadelphia, Catalog Number LDC2006T13 (2006).

[3] Stanley F Chen and Joshua Goodman. “An empirical study of smoothing techniques
for language modeling”. In: Computer Speech & Language 13.4 (1999), pp. 359–394.

[4] Jacob Eisenstein. Natural language processing. 2018.

[5] Peter Elias. “Efficient storage and retrieval by content and address of static files”.
In: Journal of the ACM (JACM) 21.2 (1974), pp. 246–260.

[6] Robert Mario Fano. On the number of bits required to implement an associative
memory. Massachusetts Institute of Technology, Project MAC, 1971.

[7] Marcello Federico, Nicola Bertoldi, and Mauro Cettolo. “IRSTLM: an open source
toolkit for handling large scale language models”. In: Ninth Annual Conference of
the International Speech Communication Association. 2008.

[8] Edward Fredkin. “Memory Trie”. In: Communications of the ACM 3.9 (1960),
pp. 490–499.

[9] Andrew Hard et al. “Federated learning for mobile keyboard prediction”. In: arXiv
preprint arXiv:1811.03604 (2018).

[10] Kenneth Heafield et al. “Scalable modified Kneser-Ney language model estimation”.
In: Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). 2013, pp. 690–696.

[11] I. J. Good. “the Population Frequencies of Species and the Estimation of Population
Parafeters”. In: Biometrika 40.3/4 (1953), pp. 237–264.

[12] Harrold Jeffreys. Theory of probability 2nd ed. 1948.

[13] William Ernest Johnson. “Probability: The deductive and inductive problems”. In:
Mind 41.164 (1932), pp. 409–423.

27

[14] Reinhard Kneser and Hermann Ney. “Improved backing-off for m-gram language
modeling”. In: 1995 international conference on acoustics, speech, and signal pro-
cessing. Vol. 1. IEEE. 1995, pp. 181–184.

[15] Kamran Kowsari et al. “Text classification algorithms: A survey”. In: Information
10.4 (2019), p. 150.

[16] Pierre-Simon Laplace. Philosophical essay on probabilities. Trans. by Andrew I Dale.
Springer, 1995.

[17] George James Lidstone. “Note on the general case of the Bayes-Laplace formula for
inductive or a posteriori probabilities”. In: Transactions of the Faculty of Actuaries
8.182-192 (1920), p. 13.

[18] Sharmila Mani et al. “Real-time optimized n-gram for mobile devices”. In: 2019
IEEE 13th International Conference on Semantic Computing (ICSC). IEEE. 2019,
pp. 87–92.

[19] Hermann Ney and Ute Essen. “On smoothing techniques for bigram-based natural
language modelling”. In: (1991), pp. 825–828.

[20] Hermann Ney and Ute Essen. “On smoothing techniques for bigram-based natu-
ral language modelling”. In: Proceedings of the IEEE International Conference on
Acoustics Speech and Signal Processing (1994), pp. 1–4.

[21] Adam Pauls and Dan Klein. “Faster and smaller n-gram language models”. In: Pro-
ceedings of the 49th annual meeting of the Association for Computational Linguis-
tics: Human Language Technologies. 2011, pp. 258–267.

[22] Giulio Ermanno Pibiri and Rossano Venturini. “Efficient data structures for massive
n-gram datasets”. In: Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2017, pp. 615–624.

[23] Giulio Ermanno Pibiri and Rossano Venturini. “Handling massive n-gram datasets
efficiently”. In: ACM Transactions on Information Systems (TOIS) 37.2 (2019),
pp. 1–41.

[24] Andreas Stolcke. “SRILM - An extensible language modeling toolkit”. In: 7th Inter-
national Conference on Spoken Language Processing, ICSLP 2002 (2002), pp. 901–
904.

28

	List of Tables
	List of Figures
	Introduction
	Language Modeling
	n-gram language models
	Smoothing techniques
	Additive smoothing
	Good-Turing
	Interpolation vs. Backoff
	Absolute discounting
	Modified Kneser-Ney

	Indexing and querying data structures
	Improving language models

	Implementation
	Overview
	ARPA format
	CETEMP preprocessing
	Trie implementation in detail
	Indexing procedure
	Next word prediction query

	Python API usage example
	Python binding
	SpaCy component

	Experiments
	Conclusion
	Bibliography

